Answer:
The height of the bag is 1.466 m.
Explanation:
Given that,
Acceleration of gravity [tex]g=9.8\ m/s^2[/tex]
Pressure = 14800 Pa
Specific gravity = 1.03
We need to calculate the density
Using formula of specific gravity
[tex]\rho_{s}=\dfrac{\rho}{\rho_{w}}[/tex]
[tex]rho=\rho_{s}\times{\rho_{w}}[/tex]
Where, [tex]\rho[/tex] = density of solution
[tex]\rho_{w}[/tex] = density of water
Put the value in to the formula
[tex]\rho=1.03\times1000[/tex]
[tex]\rho=1030\ kg/m^3[/tex]
We need to calculate the height
Using formula of pressure
[tex]P=\rho gh[/tex]
[tex]h=\dfrac{P}{\rho g}[/tex]
Where, P = pressure
g = acceleration due to gravity
h = height
Put the value into the formula
[tex]h = \dfrac{14800}{1030\times9.8}[/tex]
[tex]h=1.466\ m[/tex]
Hence, The height of the bag is 1.466 m.