We have to show that
[tex]\frac{\partial ^{2}u}{\partial t^{2}}=a^{2}\frac{\partial ^{2}u}{\partial x^{2}}[/tex]
for [tex]\frac{\partial ^{2}u}{\partial t^{2}}[/tex] we have
[tex]\frac{\partial ^{2}u}{\partial t^{2}}=a^{2}\frac{\partial ^{2}u}{\partial x^{2}}[/tex]
[tex]\frac{\partial ^{2}u}{\partial t^{2}}=\frac{\partial ^{2}[f(x-at)+g(x+at)]}{\partial t^{2}}[/tex]
[tex]=\frac{\partial }{\partial t}[\frac{\partial[f(x-at)+g(x+at)] }{\partial t}][/tex]
[tex]\frac{\partial }{\partial t}[-a\cdot f'(x-at)+a\cdot g'(x+at)][/tex]
[tex]=a^{2}f''(x-at)+a^{2}g''(x+at)[/tex]
[tex]=a^{2}[f''(x-at)+g''(x+at)].............(i)[/tex]
similarly,
[tex]\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}[f(x-at)+g(x+at)]}{\partial x^{2}}[/tex]
[tex]=\frac{\partial }{\partial x}[\frac{\partial[f(x-at)+g(x+at)] }{\partial x}][/tex]
[tex]=\frac{\partial }{\partial x}[f'(x-at)+g'(x+at)][/tex]
[tex]=f''(x-at)+g''(x+at).......(ii)[/tex]
Comparing i and ii we get
[tex]a^{2}\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}u}{\partial t^{2}}[/tex]
Hence proved