Answer:
The maximum height above the point of release is 11.653 m.
Explanation:
Given that,
Mass of block = 0.221 kg
Spring constant k = 5365 N/m
Distance x = 0.097 m
We need to calculate the height
Using stored energy in spring
[tex]U=\dfrac{1}{2}kx^2[/tex]...(I)
Using gravitational potential energy
[tex]U' =mgh[/tex]....(II)
Using energy of conservation
[tex]E_{i}=E_{f}[/tex]
[tex]U_{i}+U'_{i}=U_{f}+U'_{f}[/tex]
[tex]\dfrac{1}{2}kx^2+0=0+mgh[/tex]
[tex]h=\dfrac{kx^2}{2mg}[/tex]
Where, k = spring constant
m = mass of the block
x = distance
g = acceleration due to gravity
Put the value in the equation
[tex]h=\dfrac{5365\times(0.097)^2}{2\times0.221\times9.8}[/tex]
[tex]h=11.653\ m[/tex]
Hence, The maximum height above the point of release is 11.653 m.