Answer:
23.98 rpm
Explanation:
d = diameter of merry-go-round = 2.4 m
r = radius of merry-go-round = (0.5) d = (0.5) (2.4) = 1.2 m
m = mass of merry-go-round = 270 kg
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (270) (1.2)² = 194.4 kgm²
M = mass of john = 34 kg
Moment of inertia of merry-go-round and john together after jump is given as
I' = (0.5) m r² + M r² = 194.4 + (34) (1.2)² = 243.36 kgm²
w = final angular speed
w₀ = initial angular speed of merry-go-round = 20 rpm = 2.093 rad/s
v = speed of john before jump
using conservation of angular momentum
Mvr + I w₀ = I' w
(34) (5) (1.2) + (194.4) (2.093) = (243.36) w
w = 2.51 rad/s
w = 23.98 rpm