Answer:
Let x represents the person's age and y represents the peak heart rate of the person,
Thus, the table that shows the given situation would be,
x 16 26 32 37 42 53 48 21
y 220 194 193 178 172 160 174 214,
By the above table,
[tex]\sum x=275[/tex]
[tex]\sum y=548[/tex]
[tex]\sum x^2=10643[/tex]
[tex]\sum xy=49876[/tex]
[tex]\sum y^2=286225[/tex]
So, the correlation coefficient is,
[tex]r=\frac{n\sum xy-\sum x\sum y}{\sqrt{(n\sum x^2-(\sum x)^2)(n\sum y^2-(\sum y)^2)}}[/tex]
By substituting the values,
r ≈ 0.9681
Hence, there is a linear relation between x and y,
Now, let the linear equation that shows the given table,
y = b + ax
Where,
[tex]a=\frac{(\sum y)(\sum x^2)-(\sum x)(\sum xy)}{n\sum x^2-(\sum x)^2}[/tex]
[tex]b=\frac{\sum xy-(\sum x)(\sum xy)}{n\sum x^2-(\sum x)^2}[/tex]
By substituting the value,
We get,
a = 241.8,
b = -1.562,
Hence, the linear equation that shows the given situation,
y = -1.562x + 241.8
Since, different values of y is obtained by substituting different values of x in the equation,
Therefore, heart rate depend on the age.