Answer:2.172 GPa
0.370
0.139 mm
Explanation:
Load[P]=22 KN
thickness[t]=15 mm
width[w]=45mm
length[L]=200 mm
Longitudnal strain [tex]\varepsilon _{l0}=[tex]\frac{3}{200}[/tex]=0.015
modulus of elasticity[E]=[tex]\frac{PL}{\Delta L\ A}[/tex]
E=[tex]\frac{22\times 10^{3}\times 0.2}{15\times 45\times \10{-9}\times 3}[/tex]
E=2.172 GPa
[b]poisson's ratio [tex]\mu [/tex]
[tex]\mu =\frac{Lateral strain}{longitudnal strain}[/tex]
[tex]\mu =\frac{200\times 0.25}{3\times 45}[/tex]
[tex]\mu =0.370[/tex]
[c]Change in bar thickness
As volume remains constant
[tex]15\times 45\times 200=203\times 44.75\times t'[/tex]
t'=14.86mm
change in thickness =0.139 mm[compression]