Answer:
see explanation
Step-by-step explanation:
Given that x = - [tex]\frac{4}{3}[/tex] is a solution of the equation, then
Substitute this value into the equation and solve for b
21 (- [tex]\frac{4}{3}[/tex] )² + b (- [tex]\frac{4}{3}[/tex] ) - 4 = 0
21 × [tex]\frac{16}{9}[/tex] - [tex]\frac{4}{3}[/tex] b - 4 = 0
[tex]\frac{112}{3}[/tex] - [tex]\frac{4}{3}[/tex] b - 4 = 0
Multiply through by 3
112 - 4b - 12 = 0
100 - 4b = 0 ( subtract 100 from both sides )
- 4b = - 100 ( divide both sides by - 4 )
b = 25 ← value of b
The equation can now be written as
21x² + 25x - 4 = 0 ← in standard form
with a = 21, b = 25, c = - 4
Use the quadratic formula to solve for x
x = ( - 25 ± [tex]\sqrt{25^2-(4(21)(-4)}[/tex] ) / 42
= ( - 25 ± [tex]\sqrt{961}[/tex] ) / 42
= ( - 25 ± 31 ) / 42
x = [tex]\frac{-25-31}{42}[/tex] = [tex]\frac{-56}{42}[/tex] = - [tex]\frac{4}{3}[/tex]
or x = [tex]\frac{-25+31}{42}[/tex] = [tex]\frac{6}{42}[/tex] = [tex]\frac{1}{7}[/tex]
The other solution is x = [tex]\frac{1}{7}[/tex]