One solution of 10x^2 + bx – 3 = 0 is - 4/5 Find b and the other solution.
What is the value of b in the equation?​

Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given that x = - [tex]\frac{4}{5}[/tex] is a solution of the equation

Then substitute this value into the equation and solve for b

10 ( - [tex]\frac{4}{5}[/tex] )² + b(- [tex]\frac{4}{5}[/tex] ) - 3 = 0

10 × [tex]\frac{16}{25}[/tex] - [tex]\frac{4}{5}[/tex] b - 3 = 0

[tex]\frac{32}{5}[/tex] - [tex]\frac{4}{5}[/tex] b - 3 = 0

Multiply through by 5

32 - 4b - 15 = 0

17 - 4b = 0 ( subtract 17 from both sides )

- 4b = - 17 ( divide both sides by - 4 )

b = [tex]\frac{17}{4}[/tex] ← value of b

Given α and β are the roots of a quadratic equation, then

α + β = - [tex]\frac{b}{a}[/tex]

let α = - [tex]\frac{4}{5}[/tex], then with a = 10 and b = b

- [tex]\frac{4}{5}[/tex] + β = - [tex]\frac{\frac{17}{4} }{10}[/tex] = - [tex]\frac{17}{40}[/tex]

β = - [tex]\frac{17}{40}[/tex] + [tex]\frac{4}{5}[/tex] = [tex]\frac{3}{8}[/tex]

Hence the other solution is x = [tex]\frac{3}{8}[/tex]

ACCESS MORE