Respuesta :

Answer:

(1, 4.5 )

Step-by-step explanation:

The required point is at the midpoint of AB

Use the midpoint formula

Given A(4, 3) and B(- 2, 6 ), then

midpoint = [ 0.5(4 - 2), 0.5(3 + 6) ] = (1, 4.5 )

aachen

Answer:

The point that splits the segment AB in half is [tex]C\left ( 1,4.5 \right )[/tex]

Step-by-step explanation:

Given: Point A is located at [tex]\left ( 4,3 \right )[/tex] and point [tex]\left ( -2,6 \right )[/tex]

To find: Point that splits segment AB in half.

Solution: Let [tex]C\left ( x_{3},y_{3} \right)[/tex] be the point that splits AB in half.

We know that the mid point [tex]\left ( x_{3},y_{3} \right )[/tex] of a line segment joining the points [tex]\left ( x_{1},y_{1} \right )[/tex] and [tex]\left ( x_{2},y_{2} \right )[/tex] is calculated as [tex]\left (\frac{x_{1}+x_{2}}{2},\:\frac{y_{1}+y_{2}}{2} \right )[/tex]

Here, [tex]x_{1}=4,\:x_{2}=-2,y_{1}=3,y_{2}=6[/tex]

[tex]x_{3}=\frac{4-2}{2}[/tex]

[tex]x_{3}=\frac{2}{2}[/tex]

[tex]x_{3}=1[/tex]

[tex]y_{3}=\frac{3+6}{2}[/tex]

[tex]y_{3}=\frac{9}{2}[/tex]

[tex]y_{3}=4.5[/tex]

Hence, the point that splits the segment AB in half is [tex]C\left ( 1,4.5 \right )[/tex]

ACCESS MORE