Write an equation of the line through(2-1) and perpendicular to 2yx-4 Write the equation in the form x The one the Enter your answer in the box and then click Check Answer parts showing i Type here to search

Respuesta :

Answer:

[tex]2x+y=3[/tex]

Step-by-step explanation:

Here we aer given a point (2,-1) and a line [tex]2y=x-4[/tex]. We are supposed to find the equation of the line passing through this point and perpendicular to this line.

Let us find the slope of the line perpendicular to [tex]2y=x-4[/tex]

Dividing above equation by 2 we get

[tex]y=\frac{1}{2}x-2[/tex]

Hence we have this equation in slope intercept form and comparing it with

[tex]y=mx+c[/tex] , we get Slope [tex]m = \frac{1}{2}[/tex]

We know that product of slopes of two perpendicular lines in -1

Hence if slope of line perpendicular to [tex]y=\frac{1}{2}x-2[/tex] is m' then

[tex]m\times m' =-1[/tex]

[tex]\frac{1}{2} \times m' =-1[/tex]

[tex]m'=-2[/tex]

Hence the slope of the line we have to find is -2

now we have slope and a point

Hence the equation of the line will be

[tex]\frac{y-(-1)}{x-2}=-2[/tex]

[tex]y+1=-2(x-2)[/tex]

[tex]y+1=-2x+4[/tex]

adding 2x and subtracting  on both sides we get

[tex]2x+y=3[/tex]

Which is our equation asked

ACCESS MORE