Respuesta :
Answer:
[tex]\boxed{\text{164.7 g of CaCl$_{2 }$ and 312.7 g of water}}[/tex]
Explanation:
Let c = mass of calcium chloride
and w = mass of water
You have two conditions:
[tex]\begin{array}{rcl}\mathbf{(1)}\quad 34.5 & = & \dfrac{c }{c + w} \times 100\\\\\mathbf{(2)}\ c+ w & = & 477.4\\w & = & 477.4 - c\\\\34.5 & = & \dfrac{c }{c + 477.4 - c} \times 100\\\\34.5 & = & \dfrac{c }{477.4}\times 100\\\\c & = & \dfrac{34.5\times 477.4}{100}\\\\c & = &\mathbf{164.7}\\\\164.7 + w & = & 477.4\\w & = &\mathbf{312.7}\\\end{array}\\\text{The solution consisted of }\boxed{\textbf{164.7 g of CaCl$_{2 }$ and 312.7 g of water}}[/tex]
Answer:
[tex]m_{H_2O}=312.7g\\m_{CaCl_2}=164.703g[/tex]
Explanation:
Hello,
In this case, we take into account the by mass percentage as:
[tex]\%m/m=\frac{m_{CaCl_2}}{m_{mixture}}[/tex]
In such a way, we compute the mass of calcium chloride which is contained into 477.4g of 34.5% mixture as:
[tex]m_{CaCl_2}=m_{mixture}*\%m/m\\m_{CaCl_2}=0.345*477.4g=164.703g[/tex]
Finally, the mass of water is computed via the total mass minus the mass of calcium chloride:
[tex]m_{H_2O}=m_{mixture}-m_{CaCl_2}\\m_{H_2O}=477.4g-164.703g\\m_{H_2O}=312.7g[/tex]
Best regards.