Respuesta :
Answer:
=[tex]P' = 2 * 10 ^ 5 Pa[/tex]
Explanation:
given data:
Pressure P = 3 * 10^ 5 Pa
speed v = 5 m / s
Area A = A
from the information given in equation final Area is 1/3 of initial area i.e.
A ' = A / 3
we know that density of water = 1000 kg / m^ 3
from continuity equation
Av = A ' v'
so we have
speed v ' = 3*A*v / A
v ' = 3*A*5/ A
v = 15 m / s
from bernoulli's equation we can calculate final pressure
Required pressure P ' = P + ( 1/ 2) \rho [ v^ {2} v'^{ 2}]
= [tex]P ' = P + ( 1/ 2) \rho_{water} [ v^ {2} - v'^{ 2}][/tex]
=[tex]P - 10 ^ {5}[/tex]
= [tex]3*10^{5} - 10 ^ {5}[/tex]
=[tex]P' = 2 * 10 ^ 5 Pa[/tex]
Answer:
The pressure and speed of the water after the contraction are [tex]2\times10^{5}\ Pa[/tex] and 15 m/s.
Explanation:
Given that,
Pressure [tex]P= 3\times10^{5}[/tex]
Flowing speed = 5.0 m/s
Area = A
Final area [tex]A'=\dfrac{A}{3}[/tex]
We need to calculate the pressure and speed of the water after the contraction
Using equation of continuity
[tex]A_{1}v_{1}=A_{2}v_{2}[/tex]
Where, [tex]A_{1}[/tex] = area
[tex]A_{2}[/tex] = final area
[tex]v_{1}[/tex] = speed
Put the value into the formula
[tex]v_{2}=\dfrac{3A\times5}{A}[/tex]
[tex]v_{2}=15\ m/s[/tex]
We need to calculate the pressure of the water after the contraction
Using Bernoulli's equation
[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2=P_{2}+\dfrac{1}{2}\rho v_{2}^2[/tex]
[tex]P_{2}=P_{1}+\dfrac{1}{2}\rho (v_{2}^2-v_{2}^2)[/tex]
[tex]P_{2}=3\times10^{5}+\dfrac{1}{2}\times1000\times(5.0^2-15^2)[/tex]
[tex]P_{2}=2\times10^{5}\ Pa[/tex]
Hence, The pressure and speed of the water after the contraction are [tex]2\times10^{5}\ Pa[/tex] and 15 m/s.