Answer:
[tex]f_1 = 100Hz[/tex]
[tex]f_2 = 200Hz[/tex]
[tex]f_3 = 300Hz[/tex]
Explanation:
Given:
Length of the string, L = 1 m
Mass per unit length, (m/L) = 2.0 × 10⁻³ kg/m
Tension in the string, T = 80N
Now, We know that,
Frequency, [tex]f_n= n\frac{V}{2L}[/tex] ................(1)
where, V = velocity
also,
[tex]V=\sqrt{\frac{T}{m/L}}[/tex]
substituting the values in the equation we get
[tex]V=\sqrt{\frac{80N}{2\times10^{-3}}}[/tex]
[tex]V=200 m/s[/tex]
Now using the equation (1)
[tex]f_1= \frac{200}{2\times 1}=100 Hz[/tex]
also,
[tex]f_2= 2\times \frac{200}{2\times 1}=200 Hz[/tex]
[tex]f_3= 3\times \frac{200}{2\times 1}=300 Hz[/tex]
Hence, the required frequencies are
[tex]f_1 = 100Hz[/tex]
[tex]f_2 = 200Hz[/tex]
[tex]f_3 = 300Hz[/tex]