Answer:
the 95% confidence interval to estimate the population mean is between 1.62 and 6.50
Step-by-step explanation:
given data
distribution = 4.5, 6.4, 2.3, 1.8, 5.3
so n = 5
confidence interval = 95%
to find out
the population mean is between
solution
first we calculate the mean i.e.
mean = [tex]\frac{1}{n}\sum_{i=1}^{n}x(i)[/tex]
mean = 4.5+ 6.4+ 2.3+ 1.8+ 5.3 / 5
mean = 4.06
now we calculate the standard deviation i.e.
standard deviation = [tex]\sqrt{\frac{1}{n-1}\sum (x(i)-mean)^2}[/tex]
standard deviation = [tex]\sqrt{\frac{1}{5-1}\sum (x(i)-mean)^2}[/tex]
standard deviation = [tex]\sqrt{\frac{1}{5-1} (4.5-5)^2+(6.4-5)^2 +(2.3-5)^2+(1.8-5)^2+(5.3-5)^2}[/tex]
standard deviation = [tex]\sqrt{\frac{1}{4} (4.5-5)^2+(6.4-5)^2 +(2.3-5)^2+(1.8-5)^2+(5.3-5)^2}[/tex]
standard deviation = 2.226544
so 95 % confidence interval is i.e. mean +/- t(5) * standard deviation/ [tex]\sqrt{n}[/tex]
here t(5) will be 2.45
so
95 % confidence interval= 4.06 +/- 2.45 * 2.226 / [tex]\sqrt{5}[/tex]
95 % confidence interval= 1.62 and 6.50