a. The marginal densities
[tex]f_X(x)=\displaystyle\int_0^1(x+y)\,\mathrm dy=x+\frac12[/tex]
and
[tex]f_Y(y)=\displaystyle\int_0^1(x+y)\,\mathrm dx=y+\frac12[/tex]
b. This can be obtained by integrating the joint density over [0.25, 1] x [0.5, 1]:
[tex]P(X>0.25,Y>0.5)=\displaystyle\int_{1/4}^1\int_{1/2}^1(x+y)\,\mathrm dx\,\mathrm dy=\frac{33}{64}[/tex]