contestada

a painting in an art gallery has height h and is hung so that its lower edge is a distance d above the eye of an observer. How far from the wall should the observer stand to get the best view?

Respuesta :

Solution:

With reference to Fig. 1

Let 'x' be the distance from the wall

Then for [tex]\Delta[/tex]DAC:

[tex]tan\theta = \frac{d}{x}[/tex]

⇒ [tex]\theta = tan^{-1} \frac{d}{x}[/tex]

Now for the [tex]\Delta[/tex]BAC:

[tex]tan\theta = \frac{d + h}{x}[/tex]

⇒ [tex]\theta = tan^{-1} \frac{d + h}{x}[/tex]

Now, differentiating w.r.t x:

[tex]\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}][/tex]

For maximum angle, [tex]\frac{d\theta }{dx}[/tex] = 0

Now,

0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}][/tex]

0 = [tex]\frac{-(d + h)}{(d + h)^{2} + x^{2}} -\frac{-d}{x^{2} + d^{2}}[/tex]

[tex]\frac{-(d + h)}{(d + h)^{2} + x^{2}} = \frac{{d}{x^{2} + d^{2}}[/tex]

After solving the above eqn, we get

x = [tex]\sqrt{\frac{d}{d + h}}[/tex]

The observer should stand at a distance equal to x = [tex]\sqrt{\frac{d}{d + h}}[/tex]

Ver imagen ConcepcionPetillo
ACCESS MORE