Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for [tex]\Delta[/tex]DAC:
[tex]tan\theta = \frac{d}{x}[/tex]
⇒ [tex]\theta = tan^{-1} \frac{d}{x}[/tex]
Now for the [tex]\Delta[/tex]BAC:
[tex]tan\theta = \frac{d + h}{x}[/tex]
⇒ [tex]\theta = tan^{-1} \frac{d + h}{x}[/tex]
Now, differentiating w.r.t x:
[tex]\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
For maximum angle, [tex]\frac{d\theta }{dx}[/tex] = 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = [tex]\frac{-(d + h)}{(d + h)^{2} + x^{2}} -\frac{-d}{x^{2} + d^{2}}[/tex]
[tex]\frac{-(d + h)}{(d + h)^{2} + x^{2}} = \frac{{d}{x^{2} + d^{2}}[/tex]
After solving the above eqn, we get
x = [tex]\sqrt{\frac{d}{d + h}}[/tex]
The observer should stand at a distance equal to x = [tex]\sqrt{\frac{d}{d + h}}[/tex]