Respuesta :
Answer:
[tex]V_d[/tex] = 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire, [tex]A = \frac{\pi d^2}{4}[/tex] = [tex]A = \frac{\pi 0.625^2}{4}[/tex]
Now,
The current density, J is given as
[tex]J=\frac{I}{A}=\frac{3}{ \frac{\pi 0.625^2}{4}}[/tex]= 2444619.925 A/mm²
now, the electron density, [tex]n = \frac{\rho}{M}N_A[/tex]
where,
[tex]N_A[/tex]=Avogadro's Number
[tex]n = \frac{8.93}{63.5}(6.2\times 10^{23})=8.719\times 10^{28}\ electrons/m^3[/tex]
Now,
the drift velocity, [tex]V_d[/tex]
[tex]V_d=\frac{J}{ne}[/tex]
where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
[tex]V_d=\frac{2444619.925}{8.719\times 10^{28}\times (1.6\times 10^{-19})e}[/tex] = 1.75 × 10⁻⁴ m/s
Answer:
The drift velocity of electrons in a copper wire is [tex]1.756\times10^{-4}\ m/s[/tex]
Explanation:
Given that,
Density [tex]\rho=8.93\ g/cm^3[/tex]
Mass [tex]M=63.5\ g/mol[/tex]
Radius = 0.625 mm
Current = 3 A
We need to calculate the drift velocity
Using formula of drift velocity
[tex]v_{d}=\dfrac{J}{ne}[/tex]
Where, n = number of electron
j = current density
We need to calculate the current density
Using formula of current density
[tex] J=\dfrac{I}{\pi r^2}[/tex]
[tex] J=\dfrac{3}{3.14\times(0.625\times10^{-3})^2}[/tex]
[tex] J=2.45\times10^{6}\ A/m^2[/tex]
Now, we calculate the number of electron
Using formula of number of electron
[tex]n=\dfrac{\rho}{M}N_{A}[/tex]
[tex]n=\dfrac{8.93\times10^{6}}{63.5}\times6.2\times10^{23}[/tex]
[tex]n=8.719\times10^{28}\ electron/m^3[/tex]
Now put the value of n and current density into the formula of drift velocity
[tex]v_{d}=\dfrac{2.45\times10^{6}}{8.719\times10^{28}\times1.6\times10^{-19}}[/tex]
[tex]v_{d}=1.756\times10^{-4}\ m/s[/tex]
Hence, The drift velocity of electrons in a copper wire is [tex]1.756\times10^{-4}\ m/s[/tex]