Answer:
The Reynolds numbers for flow in the fire hose.
Explanation:
Given that,
Diameter = 6.40 cm
Rate of flow = 40.0 L/s
Pressure [tex]P=1.62\times10^{6}\ N/m^2[/tex]
We need to calculate the Reynolds numbers for flow in the fire hose
Using formula of rate of flow
[tex]Q=Av[/tex]
[tex]v=\dfrac{Q}{A}[/tex]
Where, Q = rate of flow
A = area of cross section
Put the value into the formula
[tex]v=\dfrac{40.0\times10^{-3}}{3.14\times(3.2\times10^{-2})^2}[/tex]
[tex]v=12.44\ m/s[/tex]
We need to calculate the Reynolds number
Using formula of the Reynolds number
[tex]n_{R}=\dfrac{2\rho\times v\times r}{\eta}[/tex]
Where, [tex]\eta[/tex] =viscosity of fluid
[tex]\rho[/tex] =density of fluid
Put the value into the formula
[tex]n_{R}=\dfrac{2\times100\times12.44\times3.2\times10^{-2}}{1.002\times10^{-3}}[/tex]
[tex]n_{R}=7.945\times10^{5}[/tex]
Hence, The Reynolds numbers for flow in the fire hose.