Let [tex]y_2(t)=tv(t)[/tex]. Then
[tex]{y_2}'=tv'+v[/tex]
[tex]{y_2}''=tv''+2v'[/tex]
and substituting these into the ODE gives
[tex]t^2(tv''+2v')+3t(tv'+v)-3tv=0[/tex]
[tex]t^3v''+5t^2v'=0[/tex]
[tex]tv''+5v'=0[/tex]
Let [tex]u(t)=v'(t)[/tex], so that [tex]u'(t)=v''(t)[/tex]. Then the ODE is linear in [tex]u[/tex], with
[tex]tu'+5u=0[/tex]
Multiply both sides by [tex]t^4[/tex], so that the left side can be condensed as the derivative of a product:
[tex]t^5u'+5t^4u=(t^5u)'=0[/tex]
Integrating both sides and solving for [tex]u(t)[/tex] gives
[tex]t^5u=C\implies u=Ct^{-5}[/tex]
Integrate again to solve for [tex]v(t)[/tex]:
[tex]v=C_1t^{-6}+C_2[/tex]
and finally, solve for [tex]y_2(t)[/tex] by multiplying both sides by [tex]t[/tex]:
[tex]tv=y_2=C_1t^{-5}+C_2t[/tex]
[tex]y_1(t)=t[/tex] already accounts for the [tex]t[/tex] term in this solution, so the other independent solution is [tex]y_2(t)=t^{-5}[/tex].