Use Laplace transforms to solve the following initial value problem: x"+8x'+15x = 0; x(0) = 2, x'(0) = -3 PLEASE SHOW ALL WORK, OR RISK LOSING ALL POINTS!!!! x')=sX (s) - x(0) x"(t) = sº X(s) - sx(0) - x'(0)

Respuesta :

Taking the transform of both sides gives

[tex]\mathcal L_s\{x''+8x'+15x\}=0[/tex]

[tex](s^2X(s)-sx(0)-x'(0))+8(sX(s)-x(0))+15X(s)=0[/tex]

where [tex]X(s)[/tex] denotes the Laplace transform of [tex]x(t)[/tex], [tex]\mathcal L_s\{x(t)\}[/tex]. Solve for [tex]X(s)[/tex] to get

[tex](s^2+8s+15)X(s)=2s+13[/tex]

[tex]X(s)=\dfrac{2s+13}{s^2+8s+15}=\dfrac{2s+13}{(s+3)(s+5)}[/tex]

Split the right side into partial fractions:

[tex]\dfrac{2s+13}{(s+3)(s+5)}=\dfrac a{s+3}+\dfrac b{s+5}[/tex]

[tex]2s+13=a(s+5)+b(s+3)[/tex]

If [tex]s=-3[/tex], then [tex]7=2a\implies a=\dfrac72[/tex]; if [tex]s=-5[/tex], then [tex]3=-2b\implies b=-\dfrac32[/tex]. So

[tex]X(s)=\dfrac72\dfrac1{s+3}-\dfrac32\dfrac1{s+5}[/tex]

Finally, take the inverse transform of both sides to solve for [tex]x(t)[/tex]:

[tex]x(t)=\dfrac72e^{-5t}-\dfrac32e^{-3t}[/tex]