Answer: 77.45 %
Step-by-step explanation:
We assume that the measurements are normally distributed.
Given : Mean : [tex]\mu=39[/tex]
Standard deviation : [tex]\sigma=4.0[/tex]
Let x be the randomly selected measurement.
Now we calculate z score for the normal distribution as :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x = 35, we have
[tex]z=\dfrac{35-39}{4}=-1[/tex]
For x = 45, we have
[tex]z=\dfrac{45-39}{4}=1.5[/tex]
Now, the p-value = [tex]P(35<x<45)=P(-1<z<1.5)[/tex]
[tex]=P(z<1.5)-P(z<-1)\\\\=0.9331927-0.1586553=0.7745374\approx0.7745[/tex]
In percent , [tex]0.7745\times100=77.45\%[/tex]
Hence, the percent of measurements should fall between 35 and 45 = 77.45 %