Respuesta :

Answer:

[tex]x_{1=} \frac{-1+i\sqrt{35} }{6} \\\\x_{2=} \frac{-1-i\sqrt{35} }{6}[/tex]

Step-by-step explanation:

Using the quadratic formula:

[tex]x=\frac{-b+-\sqrt{b^{2}-4*a*c} }{2*a}[/tex]

We will have two solutions:

[tex]x_{1}\\ x_{2}[/tex]

-3x^2-x-3=0     a=-3    b=-1   c=-3

We have:

[tex]x_{1}=\frac{1+\sqrt{-35} }{-6}\\\\x_{2}=\frac{1-\sqrt{-35} }{-6}\\[/tex]

we can write:

[tex]x_{1}=\frac{-1+\sqrt{-35} }{6}\\\\x_{2}=\frac{-1-\sqrt{-35} }{6}\\[/tex]

The solutions are not real numbers.

So, we know: [tex]i=\sqrt{-1}[/tex]

Finally we have:

[tex]x_{1}=\frac{-1+i\sqrt{35} }{6}\\\\x_{2}=\frac{-1-i\sqrt{35} }{6}\\[/tex]