Answer:
Density of the liquid = 1470.43 kg/m³
Explanation:
Given:
Mass of solid sphere(m) = 6.1 kg
Density of the metal = 2600 kg/m³
Thus volume of the liquid :
[tex]Volume(V)=\frac{Mass(m)}{Density (\rho)}[/tex]
Volume of the sphere = 6.1 kg/2600 kg/m³ = 0.002346 m³
The volume of water displaced is equal to the volume of sphere (Archimedes' principle)
Volume displaced = 0.002346 m³
Buoyant force =[tex]\rho\times gV[/tex]
Where
[tex]\rho[/tex] is the density of the fluid
g is the acceleration due to gravity
V is the volume displaced
The free body diagram of the sphere is shown in image.
According to image:
[tex]mg=\rho\times gV+T[/tex]
Acceleration due to gravity = 9.81 ms⁻²
Tension force = 26 N
Applying in the equation to find the density of the liquid as:
[tex]6.1\times 9.81=\rho\times 9.81\times 0.002346+26[/tex]
[tex]33.841=\rho\times 9.81\times 0.002346[/tex]
[tex]\rho=\frac{33.841}{9.81\times 0.002346}[/tex]
[tex]\rho=1470.43 kgm^3[/tex]
Thus, the density of the liquid = 1470.43 kg/m³