Answer:
point of horizontal tangent is [tex](0^{o},6)[/tex] and point of vertical tangent is [tex](-15.17^{o},5.79)[/tex]
Step-by-step explanation:
For a horizontal tangent it's slope should be zero thus
[tex]r=6cos(\theta )\\\\\frac{dr}{d\theta}=-6sin(\theta )[/tex][tex]\therefore -6sin(\theta)=0\\\\ \Rightarrow \theta =0,\pi[/tex]
Thus the ordered pair of [tex](\theta ,r)[/tex] becomes (0,6) at this point tangent is horizontal
For a vertical tangent it's slope should be [tex]\frac{\pi }{2}[/tex]
Again differentiating the given curve we get
[tex]r=6cos(\theta )\\\\ \frac{dr}{d\theta}=-6sin(\theta )[/tex][tex]\therefore -6sin(\theta)=\frac{\pi }{2}\\\\\Rightarrow \theta =sin^{-1}\frac{-\pi }{12}[/tex]
[tex]\therefore \theta =-15.17^{o}[/tex]
Thus the ordered pair of vertical tangent becomes ([tex]\theta =-15.17^{o},5.79)[/tex]