Answer:
[tex]t_o=3.5714\ seconds[/tex]
Explanation:
Given:
Speed of spaceship, v = 0.96c
using the time dilation formula, we have
[tex]t = \frac{t_o}{\sqrt(1-\frac{v^2}{c^2})}[/tex]
where,
t₀ = time in observer's frame
t = time in observed frame
c = speed of light
substituting the values in the above equation, we get
[tex]t = \frac{t_o}{\sqrt{1-\frac{(0.96c)^2}{c^2}}}[/tex]
or
[tex]t = \frac{t_o}{\sqrt{1-(0.96)^2}}[/tex]
or
[tex]t = \frac{t_o}{0.28}[/tex]
now, it is given that t = 1s advance
thus,
[tex]1 = \frac{t_o}{0.28}[/tex]
or
[tex]t_o=3.5714\ seconds[/tex]