Answer:
[tex]\int9\theta cos\theta d\theta= 9\theta sin\theta +9 cos\theta +C[/tex]
Step-by-step explanation:
We are given that a function
[tex]f(\theta)=9\thetacos\theta[/tex]
Where u=[tex]9\theta[/tex] and v=[tex] cos\theta[/tex]
We have to find the integral using by parts integration formula
[tex]\int u\cdot vdt = u\int v dt-\int(\frac{du}{dt}\int vdt )dt[/tex]
[tex]\int 9\theta cos\theta d\theta=9\theta\int cos\theta d\theta -\int (\frac{dcos\theta}{d\theta}\cdot\int cos\theta d\theta [/tex]
[tex]\int 9\thetacos\theta \d\theta=9\theta sin\theta-9(-cos\theta)+C[/tex]
Where C is integration constant.
[tex]\int 9\theta cos\theta d\theta =9\theta \cdot sin\theta -9\int sin\theta d\theta +C[/tex]
Using [tex]\int cos\thetad\theta=sin\theta[/tex]
[tex]\int9\theta cos\theta d\theta= 9\theta sin\theta +9 cos\theta +C[/tex]
Using [tex]\int sin\thetad\theta =-cos\theta[/tex].
Therefore, the integration of the given function
[tex]\int9\theta cos\theta d\theta= 9\theta sin\theta +9 cos\theta +C[/tex]