Answer : The normal boiling point of ethanol will be, [tex]348.67K[/tex] or [tex]75.67^oC[/tex]
Explanation :
The Clausius- Clapeyron equation is :
[tex]\ln (\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_1}-\frac{1}{T_2})[/tex]
where,
[tex]P_1[/tex] = vapor pressure of ethanol at [tex]30^oC[/tex] = 98.5 mmHg
[tex]P_2[/tex] = vapor pressure of ethanol at normal boiling point = 1 atm = 760 mmHg
[tex]T_1[/tex] = temperature of ethanol = [tex]30^oC=273+30=303K[/tex]
[tex]T_2[/tex] = normal boiling point of ethanol = ?
[tex]\Delta H_{vap}[/tex] = heat of vaporization = 39.3 kJ/mole = 39300 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
[tex]\ln (\frac{760mmHg}{98.5mmHg})=\frac{39300J/mole}{8.314J/K.mole}\times (\frac{1}{303K}-\frac{1}{T_2})[/tex]
[tex]T_2=348.67K=348.67-273=75.67^oC[/tex]
Hence, the normal boiling point of ethanol will be, [tex]348.67K[/tex] or [tex]75.67^oC[/tex]