Answer:
[tex]\Delta P_{x}=3.51 *10^{-24}[/tex] kg m/s
[tex]E = 3.68 * 10^{-21}[/tex] J
Explanation:
given data
uncertainty in proton position [tex]\Delta x[/tex] = 0.015 nm
according to Heisenberg's principle of uncertainty
[tex]\Delta x \Delta P_{x}= \frac{\frac{h}{2\pi }}{2}[/tex]
Where h is plank constant = [tex]6.6260 * 10^{-34}[/tex] j-s
[tex]\Delta P_{x}= \frac{\frac{h}{2\pi }}{2\Delta x}[/tex]
[tex]\Delta P_{x}= \frac{\frac{6.6260 * 10^{-34}}{2\pi }}{2*0.015*10^{-9}}[/tex]
[tex]\Delta P_{x}=3.51 *10^{-24}[/tex] kg m/s
b) kinetic energy of proton whose momentum
[tex]P =\Delta p[/tex]
[tex]E =\frac{\Delta p^{2}}{2m}[/tex]
where m is mass is proton
[tex]E =\frac{(3.51*10^{-24})^{2}}{2*1.67*10^{-27}}[/tex]
[tex]E = 3.68 * 10^{-21}[/tex] J