A 2.99-m-long2.99-m-long rod, as measured in its rest frame, speeds by you longitudinally at 6.49×107 m/s6.49×107 m/s . You measure its length as it passes. By how many millimeters do you determine the rod has contracted?

Respuesta :

Answer:

The contraction in the rod is 71 mm.

Explanation:

Given that,

original length L'= 2.99 m

Speed [tex]v= 6.49\times10^{7}\ m/s[/tex]

We need to calculate the length

Using expression for length contraction

[tex]L'=\gamma L[/tex]

[tex]L=\dfrac{L'}{\gamma}[/tex]

Where,

[tex]\gamma=\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}[/tex]

[tex]L=\sqrt{1-\dfrac{v^2}{c^2}}L'[/tex]

Where, v = speed of observer

c = speed of the light

Put the value into the formula

[tex]L=\sqrt{1-\dfrac{(6.49\times10^{7})^2}{(3\times10^{8})^2}}\times2.99[/tex]

[tex]L=2.919\ m[/tex]

The expression for the contraction in the rod

[tex]d =L'-L[/tex]

[tex]d=2.99-2.919 [/tex]

[tex]d=0.071[/tex]

[tex]d= 71\ mm[/tex]

Hence, The contraction in the rod is 71 mm.

ACCESS MORE