Answer:
The contraction in the rod is 71 mm.
Explanation:
Given that,
original length L'= 2.99 m
Speed [tex]v= 6.49\times10^{7}\ m/s[/tex]
We need to calculate the length
Using expression for length contraction
[tex]L'=\gamma L[/tex]
[tex]L=\dfrac{L'}{\gamma}[/tex]
Where,
[tex]\gamma=\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}[/tex]
[tex]L=\sqrt{1-\dfrac{v^2}{c^2}}L'[/tex]
Where, v = speed of observer
c = speed of the light
Put the value into the formula
[tex]L=\sqrt{1-\dfrac{(6.49\times10^{7})^2}{(3\times10^{8})^2}}\times2.99[/tex]
[tex]L=2.919\ m[/tex]
The expression for the contraction in the rod
[tex]d =L'-L[/tex]
[tex]d=2.99-2.919 [/tex]
[tex]d=0.071[/tex]
[tex]d= 71\ mm[/tex]
Hence, The contraction in the rod is 71 mm.