Determine the rate law and the value of k for the following reaction using the data provided.2 NO(g) + O2(g) → 2 NO2(g)[NO]i (M)[O2]i (M)Initial Rate (M-2s-1)0.0300.00558.55 x 10-30.0300.01101.71 x 10-20.0600.00553.42 x 10-2

Respuesta :

Answer: Rate law=[tex]Rate=k[NO]^2[O_2]^1[/tex]

Rate law constant is [tex]1727.3L^2mol^{-2}s^{-1}[/tex]

Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

[tex]2NO(g)+O_2(g)\rightarrow 2NO_2(g)[/tex]

[tex]Rate=k[NO]^x[O_2]^y[/tex]

k= rate constant

x = order with respect to NO

y = order with respect to [tex]O_2[/tex]

n = x+y = Total order

a) From trial 1: [tex]8.55 x 10^{-3}=k[0.030]^x[0.0055]^y[/tex]    (1)

From trial 2: [tex]1.71 x 10^{-2}=k[0.030]^x[0.0110]^y[/tex]    (2)

Dividing 2 by 1 :[tex]\frac{1.71\times 10^{-2}}{8.55\times 10^{-3}}=\frac{k[0.030]^x[0.0110]^y}{k[0.030]^x[0.0055]^y}[/tex]

[tex]2=2^y,2^1=2^y[/tex] therefore y=1.

b) From trial 1 :[tex]8.55 x 10^{-3}=k[0.030]^x[0.0055]^y[/tex]   (3)

From trial 3:[tex]3.42\times 10^{-2}=k[0.060]^x[0.0055]^y[/tex] (4)

Dividing 4 by 3:[tex]\frac{3.42\times 10^{-2}}{8.55\times 10^{-3}}=\frac{k[0.060]^x[0.0055]^y}{k[0.030]^x[0.0055]^y}[/tex]

[tex]4=2^x,2^2=2^x[/tex], x=2Thus rate law is [tex]Rate=k[NO]^2[O_2]^1[/tex]

Thus order with respect to [tex]NO[/tex] is 2 , order with respect to [tex]O_2[/tex] is 1 and total order is 1+2=3.

Rate law is [tex]Rate=k[NO]^2[O_2]^1[/tex]

b) For calculating k:

Using trial 1:  [tex]8.55\times 10^{-3}=k[0.030]^2[0.0055]^1[/tex]

[tex]k=1727.3L^2mol^{-2}s^{-1}[/tex]

The value of rate constant is [tex]1727.3L^2mol^{-2}s^{-1}[/tex]

ACCESS MORE