The probability that a part produced by a certain? factory's assembly line will be defective is 0.035. Find the probabilities that in a run of 44 ?items, the following results are obtained. ?(a) Exactly 3 defective items ?(b) No defective items ?(c) At least 1 defective item

Respuesta :

Answer:

Step-by-step explanation:

P\left ( defective item\right )=0.035

Using binomial distribution

Where p= probability of success

q=probability of failure

Here p=0.035

q=1-0.035=0.965

[tex]^nC_{r}P^{r}q^{n-r}[/tex]

(i)for exactly 3 defective items i.e. r=3

P[tex]\left ( r=3\right )[/tex]=[tex]^{44}C_{3}[/tex][tex]\left ( 0.035\right )^{3}\left ( 0.965\right )^{44-3}[/tex]

P=[tex]\frac{44!}{41!3!}\times \left ( 0.035\right )^3\left ( 0.965\right )^{41}[/tex]

P=0.1317

(ii)No defective item i.e. r=0

P[tex]\left ( r=0\right )[/tex]=[tex]^{44}C_{0}[/tex][tex]\left ( 0.035\right )^{0}[/tex][tex]\left ( 0.965\right )^{44-0}[/tex]

P=[tex]\frac{44!}{44!0!}\times \left ( 0.035\right )^0\left ( 0.965\right )^{44}[/tex]

P=0.2085

(iii)At least 1 defective item

P=1-P(zero defective item)

P=1-[tex]^{44}C_{1}\left ( 0.035\right )^{1}\left ( 0.965\right )^{44-1}[/tex]

P=1-[tex]\frac{44!}{43!1!}\times \left ( 0.035\right )^1[/tex][tex]\left ( 0.965\right )^{43}[/tex]

P=0.6671