Answer:
Poission Ratio = 0.2784
Step-by-step explanation:
we know that
Poission ratio is defined as
μ = [tex]\frac{-lateral strain}{longitudinal strain}[/tex]
We also know that lateral strain =[tex] \frac{Final width-Initial width}{Initial Width}[/tex]
In our case
Final width = 2.89945 in
Initial width = 2.9 in (Area of cross section (width x depth) = 2.9 in x 2.9 in)
Thus lateral strain = [tex]\frac{2.89945-2.9}{2.9}[/tex]
Lateral strain = [tex]-1.8965X10^{-4}[/tex]
Similarly longitudinal strain = [tex] \frac{Final Length-Initial Length}{Initial Length}[/tex]
Thus longitudinal strain = [tex]\frac{7.40504ft-7.4ft}{7.4ft}[/tex]
Longitudinal strain = [tex]6.8108X10^{-4}[/tex]
Thus by formula poission ratio = [tex]\frac{-(-1.8965X10^{-4}}{6.8108X10^{-4}}[/tex]
Poission Ratio = 0.2784