Respuesta :

For this case we apply the Pythagorean theorem, clearing the height we have:

[tex]h = \sqrt {d ^ 2-w ^ 2}[/tex]

According to the data we have:

[tex]d = 13.3 \ in\\w = 11.3 \ in[/tex]

Substituting:

[tex]h = \sqrt {(13.3) ^ 2- (11.3) ^ 2}\\h = \sqrt {176.89-127.69}\\h = \sqrt {49.2}\\h = 7.014[/tex]

We round and we have the height is[tex]7.0 \ in[/tex]

Answer:

Option B

Answer: OPTION B.

Step-by-step explanation:

Given the formula:

[tex]d=\sqrt{w^2+h^2}[/tex]

We need to solve for "h":

[tex]d^2=(\sqrt{w^2+h^2})^2\\\\d^2=w^2+h^2\\\\d^2-w^2=h^2\\\\h=\sqrt{d^2-w^2}[/tex]

In this case we can identify in the figure that:

[tex]d=13.3in\\w=11.3in[/tex]

Therefore, substituting values, we get that the height of the laptop screen (rounded to the nearest tenth) is:

[tex]h=\sqrt{(13.3in)^2-(11.3in)^2}\\\\h=7.0in[/tex]  

ACCESS MORE