The formula P = 0.672x^2 - 0.046x+ 3 models the approximate population P, in thousands, for a species of frogs in a particular rain forest, x years after 1999. During what year will the population reach 182 frogs? a) 2015 b) 2018 c) 2017 d) 2016 e) none

Respuesta :

Answer:

The correct option is d.

Step-by-step explanation:

The approximate population P, in thousands, for a species of frogs in a particular rain forest, x years after 1999 is given by the formula

[tex]P=0.672x^2-0.046x+3[/tex]

We need to find the year it which the population reach 182 frogs.

Substitute P=182 in the given formula.

[tex]182=0.672x^2-0.046x+3[/tex]

Subtract 182 from both the sides.

[tex]0=0.672x^2-0.046x+3-182[/tex]

[tex]0=0.672x^2-0.046x-179[/tex]

Multiply both sides by 1000 to remove decimals.

[tex]0=672x^2-46x-179000[/tex]

Quadratic formula:

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Substitute a=672, b=-46 and c=-179000 in the quadratic formula.

[tex]x=\frac{-\left(-46\right)\pm\sqrt{\left(-46\right)^2-4\cdot \:672\left(-179000\right)}}{2\cdot \:672}[/tex]

On simplification we get

[tex]x=\frac{-\left(-46\right)+\sqrt{\left(-46\right)^2-4\cdot \:672\left(-179000\right)}}{2\cdot \:672}\approx 16.355[/tex]

[tex]x=\frac{-\left(-46\right)-\sqrt{\left(-46\right)^2-4\cdot \:672\left(-179000\right)}}{2\cdot \:672}\approx -16.287[/tex]

The value of x can not be negative because x is number of years after 1999.

x=16.35 in means is 17th year after 1999 the population reach 182 frogs.

[tex]1999+17=2016[/tex]

The population reach 182 frogs in 2016. Therefore the correct option is d.

ACCESS MORE