A 3.00 kg object is moving in the XY plane, with its x and y coordinates given by x = 5t³ !1 and y = 3t ² + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.

Respuesta :

Answer:

The net force acting on this object is 180.89 N.

Explanation:

Given that,

Mass = 3.00 kg

Coordinate of position of [tex]x= 5t^3+1[/tex]

Coordinate of position of [tex]y=3t^2+2[/tex]

Time = 2.00 s

We need to calculate the acceleration

[tex]a = \dfrac{d^2x}{dt^2}[/tex]

For x coordinates

[tex]x=5t^3+1[/tex]

On differentiate w.r.to t

[tex]\dfrac{dx}{dt}=15t^2+0[/tex]

On differentiate again w.r.to t

[tex]\dfrac{d^2x}{dt^2}=30t[/tex]

The acceleration in x axis at 2 sec

[tex]a = 60i[/tex]

For y coordinates

[tex]y=3t^2+2[/tex]

On differentiate w.r.to t

[tex]\dfrac{dy}{dt}=6t+0[/tex]

On differentiate again w.r.to t

[tex]\dfrac{d^2y}{dt^2}=6[/tex]

The acceleration in y axis at 2 sec

[tex]a = 6j[/tex]

The acceleration is

[tex]a=60i+6j[/tex]

We need to calculate the net force

[tex]F = ma[/tex]

[tex]F = 3.00\times(60i+6j)[/tex]

[tex]F=180i+18j[/tex]

The magnitude of the force

[tex]|F|=\sqrt{(180)^2+(18)^2}[/tex]

[tex]|F|=180.89\ N[/tex]

Hence, The net force acting on this object is 180.89 N.

ACCESS MORE