Answer:
The net force acting on this object is 180.89 N.
Explanation:
Given that,
Mass = 3.00 kg
Coordinate of position of [tex]x= 5t^3+1[/tex]
Coordinate of position of [tex]y=3t^2+2[/tex]
Time = 2.00 s
We need to calculate the acceleration
[tex]a = \dfrac{d^2x}{dt^2}[/tex]
For x coordinates
[tex]x=5t^3+1[/tex]
On differentiate w.r.to t
[tex]\dfrac{dx}{dt}=15t^2+0[/tex]
On differentiate again w.r.to t
[tex]\dfrac{d^2x}{dt^2}=30t[/tex]
The acceleration in x axis at 2 sec
[tex]a = 60i[/tex]
For y coordinates
[tex]y=3t^2+2[/tex]
On differentiate w.r.to t
[tex]\dfrac{dy}{dt}=6t+0[/tex]
On differentiate again w.r.to t
[tex]\dfrac{d^2y}{dt^2}=6[/tex]
The acceleration in y axis at 2 sec
[tex]a = 6j[/tex]
The acceleration is
[tex]a=60i+6j[/tex]
We need to calculate the net force
[tex]F = ma[/tex]
[tex]F = 3.00\times(60i+6j)[/tex]
[tex]F=180i+18j[/tex]
The magnitude of the force
[tex]|F|=\sqrt{(180)^2+(18)^2}[/tex]
[tex]|F|=180.89\ N[/tex]
Hence, The net force acting on this object is 180.89 N.