Answer:
[tex]\rho = \rho_0 r[/tex]
Explanation:
As we know by Gauss law
[tex]\int E. dA = \frac{q}{\epsilon}[/tex]
here we know that
[tex]E = \frac{\rho_0 r^2}{4\epsilon}[/tex]
so here we have
[tex](\frac{\rho_0 r^2}{4\epsilon})(4\pi r^2) = \frac{(\int\rho dV)}{\epsilon}[/tex]
now we have
[tex]\frac{\pi \rho_0 r^4}{\epsilon} = \frac{(\int\rho dV)}{\epsilon}[/tex]
[tex]\pi \rho_0 r^4 = (\int\rho dV)[/tex]
now differentiate both sides by volume
[tex]\frac{d(\pi \rho_0 r^4)}{dV} = \rho [/tex]
[tex]\frac{\pi \rho_0 4r^3 dr}{4\pi r^2 dr} = \rho[/tex]
[tex]\rho = \rho_0 r[/tex]