Two objects that may be considered point masses are initially separated by a distance d. The separation distance is then decreased to d/4. How does the gravitational force between these two objects change as a result of the decrease?

Respuesta :

Answer:

Increased by 16 times

Explanation:

F = Gravitational force between two bodies

G = Gravitational constant = 6.67408 × 10⁻¹¹ m³/kg s²

m₁ = Mass of one body

m₂ = Mass of other body

d = distance between the two bodies

[tex]F=\frac{Gm_1m_2}{d^2}\\ F=\frac{1}{d^2}\quad \text {(as G and masses are constant)}[/tex]

[tex]F_{new}=\frac{1}{\left (\frac{d}{4}\right )^2}\\\Rightarrow F_{new}=\frac{1}{\frac{d^2}{16}}\\\Rightarrow F_{new}={16}\times \frac{1}{d^2}\\\Rightarrow F_{new}=16\times F[/tex]

∴Force will increase 16 times