Answer: (0.183,0.277)
Step-by-step explanation:
Given : Out of 300 people sampled, 69 preferred Candidate A.
Sample size : n= 300
Proportion of people proffered Candidate A : [tex]\hat{p}=\dfrac{69}{300}=0.23[/tex]
Significance level : [tex]\alpha =1-0.95=0.05[/tex]
Standard error : [tex]S.E.=\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]=\sqrt{\dfrac{0.23\times0.77}{300}}=0.02429677619\approx0.0242[/tex]
Margin of error : [tex]E=z_{\alpha/2}\times S.E.[/tex]
[tex]=z_{0.025}\times0.0242=1.96\times0.0242=0.047432[/tex]
The confidence interval for the population proportion is given by :-
[tex]\hat{p}\pm E[/tex]
[tex]=0.23\pm0.047432=(0.23-0.047432,0.23+0.047432)=(0.182568,0.277432)\approx(0.183,0.277)[/tex]