Respuesta :
Answer:
r = 9/sin Ф or r = 9 csc Ф
Step-by-step explanation:
The polar form is represented as:
x = r cos Ф and
y = r sin Ф
We are given:
y = 9
Putting value in y = r sin Ф
9 = r sin Ф
=> r = 9/sin Ф
1/sin Ф = csc Ф
or, r = 9 csc Ф
Answer:
[tex]r=9csc(\theta)[/tex]
Step-by-step explanation:
To convert from polar coordinates to rectangular coordinates you must use the following equivalence equations
[tex]x=rcos(\theta)[/tex] i
[tex]y=rsin(\theta)[/tex] ii
In this case we have the following equation
[tex]y=9[/tex] So we use equation ii
[tex]rsin(\theta)=9[/tex]
[tex]r=\frac{9}{sin(\theta)}[/tex]
Remember that [tex]csc(\theta)=\frac{1}{sin(\theta)}[/tex]
So
[tex]r=9csc(\theta)[/tex]