Respuesta :
Answer: The percent yield of the reaction is 17.41 %.
Explanation:
- For [tex]N_2H_4[/tex]
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Given mass of [tex]N_2H_4[/tex] = 2.65 g
Molar mass of [tex]N_2H_4[/tex] = 32.04 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of }N_2H_4=\frac{2.65g}{32.04g/mol}=0.0827mol[/tex]
- For [tex]N_2[/tex]
To calculate the number of moles, we use the equation given by ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = pressure of the gas = 1 atm
V = Volume of gas = 0.350 L
n = Number of moles = ?
R = Gas constant = [tex]0.0820\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature of the gas = 273 K
Putting values in above equation, we get:
[tex]1.00atm\times 0.350L=n\times 0.0820\text{ L atm }mol^{-1}K^{-1}\times 295K\\\\n=0.0144mol[/tex]
Now, to calculate the experimental yield of [tex]N_2[/tex], we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
We are given:
Moles of nitrogen gas = 0.0144 moles
Molar mass of nitrogen gas = 28 g/mol
Putting values in above equation, we get:
[tex]0.0144mol=\frac{\text{Mass of nitrogen gas}}{28g/mol}\\\\\text{Mass of nitrogen gas}=0.4032g[/tex]
Experimental yield of nitrogen gas = 0.4032 g
- For the given chemical equation:
[tex]N_2H_4(aq.)+O_2(g)\rightarrow N_2(g)+2H_2O(l)[/tex]
By Stoichiometry of the reaction:
1 mole of [tex]N_2H_4[/tex] produces 1 mole of nitrogen gas.
So, 0.0827 moles of [tex]N_2H_4[/tex] will produce = [tex]\frac{1}{1}\times 0.0827=0.0827mol[/tex] of nitrogen gas.
Now, to calculate the theoretical yield of nitrogen gas, we use equation 1:
Moles of nitrogen gas = 0.0827 mol
Molar mass nitrogen gas = 28 g/mol
Putting values in above equation, we get:
[tex]0.0827mol=\frac{\text{Mass of nitrogen gas}}{28g/mol}\\\\\text{Mass of nitrogen gas}=2.3156g[/tex]
Theoretical yield of nitrogen gas = 2.3156 g
- To calculate the percentage yield of nitrogen gas, we use the equation:
[tex]\%\text{ yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}\times 100[/tex]
Experimental yield of nitrogen gas = 0.4032 g
Theoretical yield of nitrogen gas = 2.3156 g
Putting values in above equation, we get:
[tex]\%\text{ yield of nitrogen gas}=\frac{0.4032g}{2.3156g}\times 100\\\\\% \text{yield of nitrogen gas}=17.41\%[/tex]
Hence, the percent yield of the reaction is 17.41 %.
When 2.65 g of N₂H₄ reacts with excess oxygen and produces 0.350 L of N₂, at 295 K and 1.00 atm, the percent yield of the reaction is 17.5 %.
Let's consider the following balanced equation.
N₂H₄(aq) + O₂(g) ⟶ N₂(g) + 2 H₂O(l)
We can calculate the theoretical volume of N₂ obtained at STP from 2.65 g of N₂H₄ considering the following conversion factors.
- The molar mass of N₂H₄ is 32.05 g/mol.
- The molar ratio of N₂H₄ to N₂ is 1:1.
- At STP, 1 mole of N₂ occupies 22.4 L
[tex]2.65 g N_2H_4 \times \frac{1molN_2H_4}{32.05gN_2H_4} \times \frac{1molN_2}{1molN_2H_4} \times \frac{22.4LN_2}{1molN_2} = 1.85 L[/tex]
We have 1.85 L of N₂ at 273.15 K, we can calculate the volume at 295 K using Charles' law.
[tex]\frac{V_1}{T_1} = \frac{V_2}{T_2} \\\\V_2 = \frac{V_1 \times T_2}{T_1} = \frac{1.85L \times 295K}{273.15K} = 2.00 L[/tex]
Finally, we can calculate the percent yield using the following expression.
[tex]\% yield = \frac{experimental\ yield}{theoretical\ yield} \times 100\% = \frac{0.350L}{2.00L} \times 100\% = 17.5\%[/tex]
When 2.65 g of N₂H₄ reacts with excess oxygen and produces 0.350 L of N₂, at 295 K and 1.00 atm, the percent yield of the reaction is 17.5 %.
Learn more: https://brainly.com/question/2506978