Which function is the inverse of function f?
![Which function is the inverse of function f class=](https://us-static.z-dn.net/files/d73/2c570f652bd8035111e3b44a6073f2b2.png)
Answer:
Option D is correct.
Step-by-step explanation:
f(x)= 9x^2 -12
Let y = 9x^2 - 12
Switch places of x and y and solve for y
x = 9y^2 - 12
Adding 12 on both sides
x + 12 = 9y^2
Dividing both sides by 9
x+12/9 = y^2
=> Taking square root on both sides
=> [tex]\sqrt{y^2}= \sqrt{\frac{x+12}{9}}\\y=\pm\frac{\sqrt{x+12}}{3}[/tex]
Replace y with g(x)
[tex]g(x)=\pm\frac{\sqrt{x+12}}{3}[/tex]
Option D is correct.
Answer: Option D
[tex]g(x)=\±\frac{\sqrt{x+12}}{3}[/tex] for [tex]x\geq -12[/tex]
Step-by-step explanation:
We have the following function
[tex]f(x) = 9x^2-12[/tex]
make [tex]f (x) = y[/tex]
[tex]y = 9x^2-12[/tex]
To find the inverse of the function, solve for the variable x
[tex]y+12 = 9x^2[/tex]
[tex]x^2=\frac{y+12}{9}[/tex]
[tex]x=\±\sqrt{\frac{y+12}{9}}[/tex]
[tex]x=\±\frac{\sqrt{y+12}}{3}[/tex]
Now interchange the variable x with the variable y
[tex]y=\±\frac{\sqrt{x+12}}{3}[/tex] for [tex]x\geq -12[/tex]
Finally, make g(x) = y
[tex]g(x)=\±\frac{\sqrt{x+12}}{3}[/tex] for [tex]x\geq -12[/tex]