Suppose that triangle ABC is a right triangle with the right angle at C. Let line segment CD be the perpendicular from point C to the hypotenuse line segment AB. Show that the ratio of the areas of triangles ADC and DCB is the same as the ratio AD: DB

Respuesta :

Step-by-step explanation:

Given:

Let triangle  ACD is aright angle triangle with right angle at C. A line perpendicular to AB join C.

Therefore we can say that line segment CD divides angle at C into two equal angles.

So in ΔACD and ΔCDB

           ∠ ACD = ∠DCB

and  ∠ADC = ∠BDC = 90°

and   CD =CD

∴ we can say that ΔACD and ΔCDB are similar triangles.

∴ Area of ΔACD = [tex]\frac{1}{2}\times base\times height[/tex]

                           = [tex]\frac{1}{2}\times AD\times CD[/tex]

Area of ΔCDB = [tex]\frac{1}{2}\times base\times height[/tex]

                           = [tex]\frac{1}{2}\times DB\times CD[/tex]

Therefore ratio of the areas of  ΔACD and ΔCDB is

i.e. [tex]\frac{\Delta ACD}{\Delta CDB}[/tex] = [tex]\frac{\frac{1}{2}\times AD\times CD}{\frac{1}{2}\times DB\times CD}[/tex]

                = [tex]\frac{AD}{DB}[/tex]

∴ Area of the ratio of [tex]\frac{\Delta ACD}{\Delta CDB}[/tex] =  [tex]\frac{AD}{DB}[/tex]

Hence proved