Answer:
stress = 366515913.6 Pa
Explanation:
given data:
density of alloy = 8.5 g/cm^3 = 8500 kg/m^3
length turbine blade = 10 cm = 0.1 m
cross sectional area = 15 cm^2 = 15*10^-4 m^2
disc radius = 70 cm = 0.7 m
angular velocity = 7500 rpm = 7500/60 rotation per sec
we know that
stress = force/ area
force = m*a
where a_{c} is centripetal acceleration =
[tex]a_{c} =r*\omega ^{2}= r*(2*\pi*\omega)^{2}[/tex]
=[tex]0.70*(2*\pi*\frac{7500}{60})^{2}[/tex]
= 431795.19 m/s^2
mass = [tex]\rho* V[/tex]
Volume = area* length = 15*10^{-5} m^3
[tex]mass = m = \rho*V = 8500*15*10^{-5} kg[/tex]
force = m*a_{c}
[tex]=8500*15*10^{-5}*0.70*(2*\pi*\frac{7500}{60})^{2}[/tex]
force = 549773.87 N
stress = force/ area
= [tex]\frac{549773.87}{15*10^{-5}}[/tex]
stress = 366515913.6 Pa