contestada

A 0.050-kg lump of clay moving horizontally at 12 m/s strikes and sticks to a stationary 0.15-kg cart that can move on a frictionless air track. Determine the speed of the cart and clay after the collision.

Respuesta :

Answer:

Explanation:

It is given that,

Mass of lump, m₁ = 0.05 kg

Initial speed of lump, u₁ = 12 m/s

Mass of the cart, m₂ = 0.15 kg

Initial speed of the cart, u₂ = 0

The lump of clay sticks to the cart as it is a case of inelastic collision. Let v is the speed of the cart and the clay after the collision. As the momentum is conserved in inelastic collision. So,

[tex]m_1u_1+m_2u_2=(m_1+m_2)v[/tex]

[tex]v=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}[/tex]

[tex]v=\dfrac{0.05\ kg\times 12\ m/s+0}{0.05\ kg+0.15\ kg}[/tex]

v = 3 m/s

So, the speed of the cart and the clay after the collision is 3 m/s. Hence, this is the required solution.

The speed of the cart and clay after the collision is 3 m/s.

Conservation of linear momentum

The speed of the cart and clay after the collision is determined by applying the principle of conservation of linear momentum as shown below;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

0.05(12) + 0.15(0) = v(0.05 + 0.15)

0.6 = 0.2v

v = 0.6/0.2

v = 3 m/s

Thus, the speed of the cart and clay after the collision is 3 m/s.

Learn more about linear momentum here: https://brainly.com/question/7538238