Respuesta :
Let [tex]A(t)[/tex] denote the amount of salt in the tank at time [tex]t[/tex]. We're told that [tex]A(0)=0[/tex].
For [tex]0\le t\le15[/tex], the salt flows in at a rate of (1/5 lb/gal)*(5 gal/min) = 1 lb/min. When the regulating mechanism fails, 20 lbs of salt is dumped and no more salt flows for [tex]t>15[/tex]. We can capture this in terms of the unit step function [tex]u(t)[/tex] and Dirac delta function [tex]\delta(t)[/tex] as
[tex]\text{rate in}=u(t)-u(t-15)+20\delta(t-15)[/tex]
(in lb/min)
The salt from the mixed solution flows out at a rate of
[tex]\text{rate out}=\left(\dfrac{A(t)\,\mathrm{lb}}{50+(5-5)t\,\mathrm{gal}}\right)\left(5\dfrac{\rm gal}{\rm min}\right)=\dfrac A{10}\dfrac{\rm lb}{\rm min}[/tex]
Then the amount of salt in the tank at time [tex]t[/tex] changes according to
[tex]\dfrac{\mathrm dA}{\mathrm dt}=u(t)-u(t-15)+20\delta(t-15)-\dfrac A{10}[/tex]
Let [tex]\hat A(s)[/tex] denote the Laplace transform of [tex]A(t)[/tex], [tex]\hat A(s)=\mathcal L_s\{A(t)\}[/tex]. Take the transform of both sides to get
[tex]s\hat A(s)-A(0)=\dfrac1s-\dfrac{e^{-15s}}s+20e^{-15s}-\dfrac1{10}\hat A(s)[/tex]
Solve for [tex]\hat A(s)[/tex], then take the inverse of both sides.
[tex]\hat A(s)=\dfrac{\frac{10-10e^{-15s}}{s^2}+\frac{200e^{-15s}}s}{10s+1}[/tex]
[tex]\implies\boxed{A(t)=10-10e^{-t/10}+\left(30e^{3/2-t/10}-10\right)u(t-15)}[/tex]