Solve the separable initial value problem. 1. y' = ln(x)(1 + y2), y(1) = 3 = y= tan(xlnx-x+1+arctan(3) 2. y' = 9x? V1 + x? (1 + y2), y(0) = 3 = y=

Respuesta :

Answer:

1) y = tan(xlnx-x+tan⁻¹(3) + 1)

2) [tex]tan^{-1}y=2(1+x^3)^{\frac{3}{2}}+ tan^{-1}(3) - 2[/tex]

Step-by-step explanation:

1) y' = ln(x)(1 + y²),  y(1) = 3    Ans y= tan(x lnx-x+1+tan⁻¹(3))

solution:

y' = ln(x)(1 + y²)

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}= lnx\ (1+y^2)[/tex]

[tex]\frac{dy}{1+y^2}={lnx}{dx}\\\int\frac{dy}{1+y^2}=\int \{lnx}dx\\tan^{-1}y=xlnx-x+c[/tex]

using condition y(1) = 3

tan⁻¹(3)=-1+c

c = tan⁻¹(3) + 1

now,

tan⁻¹(y)=xlnx-x+tan⁻¹(3) + 1

y = tan(xlnx-x+tan⁻¹(3) + 1)

2)  y' = 9x² √(1 + x)³ (1 + y²),   y(0) = 3

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=9x^2\sqrt{1+x^3}(1+y^2)[/tex]

[tex]\dfrac{dy}{1+y^2} = 9x^2\sqrt{1+x^3}\\\int\dfrac{dy}{1+y^2} = \int9x^2\sqrt{1+x^3}\\ tan^{-1}y=  \int9x^2\sqrt{1+x^3}[/tex]

let 1+x³=u    [tex]{u}'= 3x^2[/tex]

[tex]tan^{-1}y=\int 3\sqrt{u}du\\tan^{-1}y=2u^{\frac{3}{2}}[/tex]

inserting value of 'u' in equation above

[tex]tan^{-1}y=2(1+x^3)^{\frac{3}{2}}+c[/tex]

inserting value y(0) = 3

c =  tan⁻¹(3) - 2

[tex]tan^{-1}y=2(1+x^3)^{\frac{3}{2}}+ tan^{-1}(3) - 2[/tex]

ACCESS MORE