Solve the following simultaneous linear congruences.

a) x ? 1 (mod 3), x ? 2 (mod 4), x ? 3 (mod 5).
b) x ? 4 (mod 10), x ? 8 (mod 12), x ? 6 (mod 18).

Respuesta :

a. The moduli are coprime, so you can apply the Chinese remainder theorem directly. Let

[tex]x=4\cdot5+3\cdot5+3\cdot4[/tex]

  • Taken mod 3, the last two terms vanish, and [tex]20\equiv2\pmod3[/tex] so we need to multiply by the inverse of 2 modulo 3 to end up with a remainder of 1. Since [tex]2\cdot2\equiv4\equiv1\pmod3[/tex], we multiply the first term by 2.

[tex]x=4\cdot5\cdot2+3\cdot5+3\cdot4[/tex]

  • Taken mod 4, the first and last terms vanish, and [tex]15\equiv3\pmod4[/tex]. Multiply by the inverse of 3 modulo 4 (which is 3 because [tex]3\cdot3\equiv9\equiv1\pmod4[/tex]), then by 2 to ensure the proper remainder is left.

[tex]x=4\cdot5\cdot2+3\cdot5\cdot3\cdot2+3\cdot4[/tex]

  • Taken mod 5, the first two terms vanish, and [tex]12\equiv2\pmod5[/tex]. Multiply by the inverse of 2 modulo 5 (3, since [tex]3\cdot2\equiv6\equiv1\pmod5[/tex]) and again by 3.

[tex]x=4\cdot5\cdot2+3\cdot5\cdot3\cdot2+3\cdot4\cdot3\cdot3[/tex]

[tex]\implies x=238[/tex]

By the CRT, we have

[tex]x\equiv238\pmod{3\cdot4\cdot5}\implies x\equiv-2\pmod{60}\implies\boxed{x\equiv58\pmod{60}}[/tex]

i.e. any number [tex]58+60n[/tex] (where [tex]n[/tex] is an integer) satisifes the system.

b. The moduli are not coprime, so we need to check for possible contradictions. If [tex]x\equiv a\pmod m[/tex] and [tex]x\equiv b\pmod n[/tex], then we need to have [tex]a\equiv b\pmod{\mathrm{gcd}(m,n)}[/tex]. This basically amounts to checking that if [tex]x\equiv a\pmod m[/tex], then we should also have [tex]x\equiv a\pmod{\text{any divisor of }m}[/tex].

[tex]x\equiv4\pmod{10}\implies\begin{cases}x\equiv4\equiv0\pmod2\\x\equiv4\pmod5\end{cases}[/tex]

[tex]x\equiv8\pmod{12}\implies\begin{cases}x\equiv0\pmod2\\x\equiv2\pmod3\end{cases}[/tex]

[tex]x\equiv6\pmod{18}\implies\begin{cases}x\equiv0\pmod2\\x\equiv0\pmod3\end{cases}[/tex]

The last congruence conflicts with the previous one modulo 3, so there is no solution to this system.