Solve the system for the exact special solution y = y(x): (keep the fraction and the square root without decimals.) 1. ydx + x[ In(x) - In(y) - 1]dy = 0 and y(1) = e for In(e) = 1.

Respuesta :

Assume a solution of the form [tex]\Psi(x,y)=C[/tex]. Differentiating both sides gives

[tex]\Psi_x\,\mathrm dx+\Psi_y\,\mathrm dy=0[/tex]

with [tex]\Psi_x=y[/tex] and [tex]\Psi_y=x(\ln x-\ln y-1)[/tex].

Divide both sides by [tex]x[/tex] and we have

[tex]\dfrac yx\,\mathrm dx+(\ln x-\ln y-1)\,\mathrm dy=0[/tex]

Notice that

[tex]\left(\dfrac yx\right)_y=\dfrac1x[/tex]

[tex]\left(\ln x-\ln y-1\right)_x=\dfrac1x[/tex]

so the ODE is exact. Now we can look for a solution [tex]\Psi[/tex] with

[tex]\Psi_x=\dfrac yx[/tex]

[tex]\Psi_y=\ln x-\ln y-1[/tex]

Integrating the first PDE with respect to [tex]x[/tex] gives

[tex]\Psi(x,y)=y\ln x+f(y)[/tex]

and differentiating this with respect to [tex]y[/tex] gives

[tex]\Psi_y=\ln x+f'(y)=\ln x-\ln y-1\implies f'(y)=-\ln y-1\implies f(y)=-y\ln y+C[/tex]

So this ODE has general solution

[tex]y\ln x-y\ln y=C[/tex]

Given that [tex]y(1)=e[/tex], we have

[tex]e\ln1-e\ln e=C\implies C=-e[/tex]

so the particular solution is

[tex]y(\ln x-\ln y)=-e[/tex]

[tex]y\ln\dfrac xy=-e[/tex]

[tex]\boxed{y\ln\dfrac yx=e}[/tex]