Respuesta :
Answer:
[tex]SA=514,457,600\ km^{2}[/tex]
[tex]V=1,097,509,546,667\ km^{3}[/tex]
Step-by-step explanation:
step 1
Find the surface area
we know that
the surface area of a sphere is equal to
[tex]SA=4\pi r^{2}[/tex]
substitute
[tex]SA=4 \pi (6,400)^{2}[/tex]
[tex]SA=163,840,000 \pi\ km^{2}[/tex]
substitute the approximate value of pi (3.14)
[tex]SA=(3.14) (163,840,000)[/tex]
[tex]SA=514,457,600\ km^{2}[/tex]
step 2
Find the volume
The volume is equal to
[tex]V=(4/3)\pi r^{3}[/tex]
substitute
[tex]V=(4/3)(3.14) (6,400)^{3}[/tex]
[tex]V=1,097,509,546,667\ km^{3}[/tex]
Answer:
Volume V
[tex]V =1.098\ *\ 10^{12}\ km^3[/tex]
Surface area [tex]A_s[/tex]
[tex]A_s =5.147\ *\ 10^{8}\ km^2[/tex]
Step-by-step explanation:
Suppose that the shape of the earth is completely spherical.
Then the surface area and the volume of a sphere are given by the following formulas
Surface area [tex]A_s[/tex]
[tex]A_s =4\pi r^2[/tex]
Volume V
[tex]V =\frac{4}{3}\pi r^3[/tex]
In this case we know the radius r of the sphere.
[tex]r = 6400\ km[/tex]
then we use the radius value to find the volume and surface area
Volume V
[tex]V =\frac{4}{3}\pi (6400)^3[/tex]
[tex]V =1.098\ *\ 10^{12}\ km^3[/tex]
Surface area [tex]A_s[/tex]
[tex]A_s =4\pi (6400)^2[/tex]
[tex]A_s =5.147\ *\ 10^{8}\ km^2[/tex]