Respuesta :

Answer:

[tex]SA=514,457,600\ km^{2}[/tex]

[tex]V=1,097,509,546,667\ km^{3}[/tex]

Step-by-step explanation:

step 1

Find the surface area

we know that

the surface area of a sphere is equal to

[tex]SA=4\pi r^{2}[/tex]

substitute

[tex]SA=4 \pi (6,400)^{2}[/tex]

[tex]SA=163,840,000 \pi\ km^{2}[/tex]

substitute the approximate value of pi (3.14)

[tex]SA=(3.14) (163,840,000)[/tex]

[tex]SA=514,457,600\ km^{2}[/tex]

step 2

Find the volume

The volume is equal to

[tex]V=(4/3)\pi r^{3}[/tex]

substitute

[tex]V=(4/3)(3.14) (6,400)^{3}[/tex]

[tex]V=1,097,509,546,667\ km^{3}[/tex]

Answer:

Volume V

[tex]V =1.098\ *\ 10^{12}\ km^3[/tex]

Surface area [tex]A_s[/tex]

[tex]A_s =5.147\ *\ 10^{8}\ km^2[/tex]

Step-by-step explanation:

Suppose that the shape of the earth is completely spherical.

Then the surface area and the volume of a sphere are given by the following formulas

Surface area [tex]A_s[/tex]

[tex]A_s =4\pi r^2[/tex]

Volume V

[tex]V =\frac{4}{3}\pi r^3[/tex]

In this case we know the radius r of the sphere.

[tex]r = 6400\ km[/tex]

then we use the radius value to find the volume and surface area

Volume V

[tex]V =\frac{4}{3}\pi (6400)^3[/tex]

[tex]V =1.098\ *\ 10^{12}\ km^3[/tex]

Surface area [tex]A_s[/tex]

[tex]A_s =4\pi (6400)^2[/tex]

[tex]A_s =5.147\ *\ 10^{8}\ km^2[/tex]