Answer : The de-Broglie wavelength of this electron, [tex]0.101\AA[/tex]
Explanation :
The formula used for kinetic energy is,
[tex]K.E=\frac{1}{2}mv^2[/tex] ..........(1)
According to de-Broglie, the expression for wavelength is,
[tex]\lambda=\frac{h}{mv}[/tex]
or,
[tex]v=\frac{h}{m\lambda}[/tex] ...........(2)
Now put the equation (2) in equation (1), we get:
[tex]\lambda=\frac{h}{\sqrt{2\times m\times K.E}}[/tex] ...........(3)
where,
[tex]\lambda[/tex] = wavelength = ?
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
m = mass of electron = [tex]9.11\times 10^{-31}Kg[/tex]
K.E = kinetic energy = [tex]4.71\times 10^{-15}J[/tex]
Now put all the given values in the above formula (3), we get:
[tex]\lambda=\frac{6.626\times 10^{-34}Js}{\sqrt{2\times 9.11\times 10^{-31}Kg\times 4.71\times 10^{-15}J}}[/tex]
[tex]\lambda=1.0115\times 10^{-11}m=0.101\AA[/tex]
conversion used : [tex](1\AA=10^{-10}m)[/tex]
Therefore, the de-Broglie wavelength of this electron, [tex]0.101\AA[/tex]