Technetium (Tc; Z = 43) is a synthetic element used as a radioactive tracer in medical studies. A Tc atom emits a beta particle (electron) with a kinetic energy (Ek) of 4.71 × 10−15 J. What is the de Broglie wavelength of this electron (Ek = mu2/2)?

Respuesta :

Answer : The de-Broglie wavelength of this electron, [tex]0.101\AA[/tex]

Explanation :

The formula used for kinetic energy is,

[tex]K.E=\frac{1}{2}mv^2[/tex]        ..........(1)

According to de-Broglie, the expression for wavelength is,

[tex]\lambda=\frac{h}{mv}[/tex]

or,

[tex]v=\frac{h}{m\lambda}[/tex]      ...........(2)

Now put the equation (2) in equation (1), we get:

[tex]\lambda=\frac{h}{\sqrt{2\times m\times K.E}}[/tex]  ...........(3)

where,

[tex]\lambda[/tex] = wavelength = ?

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

m = mass of electron = [tex]9.11\times 10^{-31}Kg[/tex]

K.E = kinetic energy = [tex]4.71\times 10^{-15}J[/tex]

Now put all the given values in the above formula (3), we get:

[tex]\lambda=\frac{6.626\times 10^{-34}Js}{\sqrt{2\times 9.11\times 10^{-31}Kg\times 4.71\times 10^{-15}J}}[/tex]

[tex]\lambda=1.0115\times 10^{-11}m=0.101\AA[/tex]

conversion used : [tex](1\AA=10^{-10}m)[/tex]

Therefore, the de-Broglie wavelength of this electron, [tex]0.101\AA[/tex]

RELAXING NOICE
Relax